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Abstract
This paper deals with the study of transients in overhead lines illuminated
by an interfering plane-wave disturbance. Simple and accurate analytical
expressions for transmission line parameters are used to take into account
losses in the ground. Transmission line equations are derived in the Laplace
s-domain. An FFT-based numerical inverse Laplace transform (FNILT) is used
in conjunction with the piecewise decomposition technique to evaluate transient
induced currents and voltages at nonlinear line terminals. Sample numerical
results are presented.

PACS numbers: 02.30.Nw, 84.40.Az

1. Introduction

The sensitivity of electronic devices in power networks to electromagnetic interferences (EMI)
has increased the interest in transients particularly in transmission lines that constitute the
fundamental connection elements for electronic and power subsystems. Various approaches
have been proposed in the literature [1–4] for the analysis of the field-to-transmission line
problems. These methods can be divided into two groups: time-domain [6–8] and frequency-
domain methods [1, 3, 5, 9]. When dealing with above-ground multiconductors, it is useful
to formulate the problem in the frequency domain. Indeed, in this domain it is easier to carry
out equations describing losses in the ground, line propagation effects and the wire-to-wire
coupling. The time-domain results are usually obtained using FFT techniques.

A procedure based on transmission-line theory is utilized in this paper. The losses in the
ground are taken into account by introducing an accurate, simple and analytical expression
for the frequency-dependent line parameters [10]. The proposed formulation obeys the
telegraphers equation model, with a substantial difference with respect to other previous
works. In fact, the most frequently-used technique for generating the general solution to the
multiconductor transmission line equations is based on the application of the modal concept
1 Present address: Hay Sadri, Rue 10, no 135, Groupe 3, Casablanca, Morocco.
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Figure 1. Line geometry.

in the frequency domain. The line equations are uncoupled using transformation matrices to
obtain a set of uncoupled equations which could be solved by an inspection method. The
Fourier transform is then performed to provide the time-domain solution. In this work, the
computation of the admittance matrix relating the terminal currents and voltages of the line is
performed in the Laplace s-domain without the need of mode quantities. Furthermore, the
line network is divided into frequency-dependent and nonlinear time-dependent parts. The
nonlinear line terminals such as surge arresters (varistor, sparkgap) are excited by piecewise
linear time-dependent sources. The time-domain response of the frequency-dependent part
of the network is achieved using an accurate FFT-based numerical inverse Laplace transform.
Then, a Newton–Raphson iteration is stated to include the nonlinear part. Finally, some
numerical examples are presented.

2. Formulation in the frequency s-domain

2.1. Transmission line model

The problem considered consists of a system of N conductors, all parallel to the z-axis and
located above a lossy earth with electrical parameters εg = εrgεo, σg and µo . These conductors
are of length l. The region (y > 0) is taken to be a free space of electrical constants εo, µo.
The earth (region y < 0) is assumed to be homogeneous and a complex refractive index n is

defined for it as n = (
εrg + σg

sεo

) 1
2 . The nth conductor has a radius of an and is located at a

height y = hn and a position x = dn. A plane wave, which is assumed to have an arbitrary
polarization, is incident on the line as described by the angles θ and φ (see figure 1).

The behaviour of the voltages and currents on an excited N above-ground coupled
transmission-line system is described in terms of the telegrapher equations in the frequency
s-domain [2, 3]

dVs(z, s)

dz
+ Z(s)I(z, s) = Ez(d, h, z, s) − Ez(d, 0, z, s)

dI(z, s)
dz

+ Y(s)Vs(z, s) = 0 (0 < z < l)

(1)
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where Ez is the tangential exciting electric field. The scattered voltage Vs can be expressed
in terms of the total voltage V induced on the line and the exciting voltage Ve

Vs(z, s) = V(z, s) − Ve(z, s) = V(z, s) −
∫ 0

h
Ey(d, y, z, s) dy (2)

where Ey is the vertical exciting electric field component. Z(s) and Y(s) are N × N -
dimensional matrices which represent the series impedance and the shunt admittance per unit
length of the line. V(z, s) and I(z, s) are column vectors defining the voltages vk(z, s) and
currents ik(z, s) induced on the conductors k = 1, 2, 3, . . . , N . These voltages are measured
by taking the ground plane as a reference conductor h = (hk)k=1,...,N and d = (dk)k=1,...,N .
The frequency-dependent distributed parameter line model, characterized by Z(s) and Y(s),

was directly obtained from scattering theory under quasi-TEM wave propagation. The model
takes into account the effects of the finite ground conductivity. Simple and accurate analytical
expressions for the line parameters were derived in [10]. Only the final results are quoted here
in terms of the inductance matrix L and the quantities G and J which represent, respectively,
the losses of the conduction and the displacement current in the ground,

Z(s) = Zw(s) + s
(

L +
µ0

2π
J
)

(3)

Y(s) = s

v2

(
L +

µ0

2π
G

)−1
. (4)

The term Zw associated with the conductor internal impedances is a diagonal matrix and a
function of s. The internal impedance matrix elements Zwkl can be easily determined for
various conductor types [1]. For thin solid conductors

Zwkl = µw

2πbk

√
s
I0(bk

√
s)

I1(bk

√
s)

δkl

δkl =
{

1, k = l

0, k �= l
(k, l = 1, 2, . . . , N)

(5)

where bk = ak
√

σwµw, with µw and σw being the electrical parameters characterizing the kth
wire. I0(z) and I1(z) are the modified Bessel functions.

The elements of the external inductance matrix which do not depend on s (the quasi-
stationary approximation) are

Lkl = µ0

2π
ln

( √
((dk − dl)2 + (hl + hk)2)√
((dk − dl)2 + (hl − hk)2)

)
(k, l = 1, 2, . . . , N). (6)

The contribution of losses in the ground is specified by the matrices G and J whose
elements are [10]

Jkl = ln




√
(dk − dl)2 + (hl + hk + 2/(k0

√
1 − n2))2√

((dk − dl)2 + (hl + hk)2)




Gkl = P(�kl) + P(�̄kl) (k, l = 1, 2, . . . , N)

(7)

where �kl = k0(hk + hl + i |dk − dl|) , �̄kl = k0(hk + hl − i |dk − dl|) and

P(z) =
(

−1

4
+

1

2

1

n2 + 1

)
Q(bz) +

1

4
Q

(
bz +

2b√
n2 − 1

)
− 1

2
ln

(
1 +

2√
1 − n2

)
(8)
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with Q(z) = exp(−z)E1(−z) + exp(z)E1(z). The exponential integral is defined by
E1(z) = ∫ ∞

z
exp(−t)/t dt [11, p 228], and b = i/

√
n2 + 1. k0 = i s/v is the propagation

constant in air. v is the speed of light in air.

2.2. Exciting electric field

In determining the response of the multiconductor line subjected to an external excitation, it
is first necessary to evaluate the impressed tangential electric field on the conductors and the
vertical exciting electric field component. Because the external excitation is assumed to be an
electromagnetic EMP plane wave propagating in the free space at speed v , the incident and
the ground-reflected electric fields are described by the following expressions,

E+(r, s) = P+E(s) eik+
or (9)

E−(r, s) = (�vP−
v + �hP−

h )E(s) eik−
o r (10)

where r = xix + yiy + ziz is the position vector and E(s) is the Laplace transform of the
impulse waveform. P± = ( cos(η)a±

θ + sin(η)aφ). P+ is the polarization unit vector of
the incident electric field E+ and η is the polarization angle. It is useful to note that for
the vertically polarized incident field η = 0◦ ( P+ lies in the incidence plane). The horizontally
polarized part of the incident field is obtained by taking η = 90◦ (P+ is perpendicular to the
incidence plane). The subscripts v and h designate the vertical and the horizontal polarizations
respectively. In a Cartesian coordinate system

a±
θ = ∓ sin(θ) sin(φ)ix + cos(θ)iy ± sin(θ) cos(φ)iz

aφ = cos(φ)ix + sin(φ)iz
(11)

k±
o = i s

v
(− cos(θ) sin(φ)ix ∓ sin(θ)iy + cos(θ) cos(φ)iz)

P− = P−
v + P−

h P−
v = cos(η)a−

θ P−
h = sin(η)aφ.

(12)

The terms �v and �h are the vertical and the horizontal Fresnel reflection coefficients for a
lossy earth. These are expressed as [12]

�v = n2 sin(θ) −
√

n2 − cos(θ)2

n2 sin(θ) +
√

n2 − cos(θ)2

�h = sin(θ) −
√

n2 − cos(θ)2

sin(θ) +
√

n2 − cos(θ)2
.

(13)

The resultant electric field affecting the line conductors is obtained by summing (9)
and (10),

E(r, s) = E+(r, s) + E−(r, s). (14)

Note that in equations (9), (10) and (14), the zero phase is at the origin of a Cartesian coordinate
system at r = 0, which implies that the EMP plane wave impinging on the air–earth interface
reaches this point at t = 0. A simple manipulation of ( 9), (10), (11) and (14) can be performed
to yield the y- and z-directed components of the total electric field at a position denoted by
(x, y, z) as

Ez = E(s)
[
(cos(η) sin(θ) cos(φ) + sin(η) sin(φ)) exp

( s

v
sin(θ)y

)
+ (�v cos(η) sin(θ) cos(φ) − �h sin(η) sin(φ)) exp

(
− s

v
sin(θ)y

)]
× exp

(
− s

v
(− cos(θ) sin(φ)x + cos(θ) cos(φ)z)

)
(15)
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Ey = E(s) cos(η) cos(θ)
[
exp

( s

v
sin(θ)y

)
+ �v exp

(
− s

v
sin(θ)y

)]
× exp

(
− s

v
(− cos(θ) sin(φ)x + cos(θ) cos(φ)z)

)
. (16)

3. Nonlinear loaded line equations

3.1. Piecewise linear approximation

When dealing with lightning overvoltages, it is usual to employ nonlinear devices to clip
and limit high amplitude overvoltages and currents which can occur on a multiconductor line
system. In this paper, time-dependent nonlinear resistances (varistors) are used as nonlinear
line terminations. It is assumed that nonlinear models are static and voltage-controlled current
sources (VCCS). The nonlinear voltage-controlled current source may be expressed as a
function of voltages I(τ ) = f(V(τ )). By the word static it is meant that function f depends
only on the instantaneous values of the voltages.

By decomposing the nonlinear VCCS I(τ ) as a sum of say M terms

I(τ ) =
M−1∑
k=0

Ik(τ )

the response χ(τ ) of a linear network at time τ may be calculated as the sum of the responses
due to each of the Ik(.) acting alone

χ(τ ) =
M−1∑
k=0

χk(τ ) + χs(τ )

where χk is the response of the network obtained while replacing nonlinear ports by the
time-dependent current source Ik(.). Note that when all Ik are set to zero, χ = χs .

Now, let us approximate I(τ ) by first dividing the analysis interval [0, T ] into M intervals
of length �, that is � = T

M
, and second, over each successive interval, say (τk, τk+1), we

replace the curve I(τ ) by a linear segment for τk < τ < τk + � = τk+1. Thus, it is clear that
the linear-piecewise approximation of the nonlinear VCCS may be described by the following
relationship:

I(τ ) =
M−1∑
k=0

(IAkτ + IBk)P�(τ − τk) (0 < τ < T ) (17)

where P� is the rectangular pulse. This is expressed in terms of the unit step function H(.)

as: P�(τ) = 1
�

(H(τ) − H(τ − �)),

IAk = Ik+1 − Ik Ik = I(τk) IBk = �Ik − (Ik+1 − Ik)τk.

3.2. Resolution of coupling equations in the Laplace s-domain

Now, consider the situation described in figure 2 to illustrate the formulation of transmission
line coupling equations. An uniform two-wire transmission line whose conductors are
located at (d1 = 0 m, h1 = 5 m) and (d2 = 2 m, h1 = 5 m) and both have a radius of
a1 = a2 = 2.5 mm. Each wire is terminated at the far end (z = l) by a nonlinear resistor and
at the near end (z = 0) by a resistor R. The length of the line is taken to be l = 10 m. The line
is illuminated by a plane wave. We now return to the general formulation.
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On inserting equation (2) in (1), it is easy to show that

dΨ(z, s)

dz
+ A(s)Ψ(z, s) = Ψs(z, s) (18)

where Ψ(z, s) = (v1(z, s), v2(z, s), . . . , vN(z, s), i1(z, s), i2(z, s), . . . , iN (z, s))T and

A(s)=
(

0 Z(s)

Y(s) 0

)
. (19)

The superscript T designates the transpose. The column vector Ψs is given by

Ψs(z, s) =
(

Ez(d, h, z, s) − Ez(d, 0, z, s) + ∂Ve

∂z
(z, s)

Y(s)Ve(z, s)

)
. (20)

The general solution to equation (18) can be written as follows:

Ψ(z, s) = exp(−A(s)z)

(∫ z

0
exp(Az′)Ψs(z

′, s) dz′ + Ψ(0, s)

)
. (21)

Let ∫ z

0
exp(Az′)Ψs(z

′, s) dz′ =
(

Qv(z, s)

QI (z, s)

)
(22)

where Qv and QI are N-dimensional column vectors. Since the z dependence of the exciting
electric field is characterized by an exponential term (see equations (15), (16)), analytical
expressions for Qv and QI are simply given by(

Qv(z, s)

QI (z, s)

)
= (A − ξθ,φ(s)U)−1(exp((A − ξθ,φ(s)U)z) − U)Ψs(0, s)

where ξθ,φ(s) = s/v cos(θ) cos(φ) and U is the unit matrix of dimension 2N × 2N .
It can easily be seen from equations (21) and (22) that the currents and voltages at the line

ends obey the following relationship:(
I(0, s)

−I(l, s)

)
= Ỹ

(
V(0, s)

V(l, s)

)
+ Ỹ

(
Qv(l, s)

0

)
−

(
QI (l, s)

0

)
(23)

where the N-dimensional elements Ỹij (i, j = 1, 2) of the admittance matrix Ỹ are given by

Ỹ =
(

Ỹ11 Ỹ12

Ỹ12 Ỹ22

)
Ỹ11 = Ỹ22 = −K−1

12 K11 Ỹ12 = Ỹ21 = K−1
12

with exp(−A(s)l) =
(K11 K12

K21 K22

)
.

Since the loads at the near end (z = 0) of the line are linear time-invariant resistors
(figure 2), it can readily be shown that

V(0, s) = −RI(0, s) (24)

where R = RU.

To deal with nonlinear components at the far end (z = l) line terminals, it is convenient
and more illuminating to rewrite equations (23) and (24) in a single matrix equation as follows,

Â(s)χ(s) = Ws(s) − DI(l, s) (25)

where

Â(s) =

Ỹ −U

0
U 0 R
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Figure 2. Nonlinear loaded transmission line.

Ws(s) =



[
QI (l, s)

0

]
− Ỹ

[
Qv(l, s)

0

]
0




D = (0, U, 0)T χ(s) = (V(0, s), V(l, s), I(0, s))T .

It is important to note here that the nonlinear load currents, I(l, s), must be sorted out and
displayed, prominently, on the right-hand side of the equation.

Now, using the piecewise-linear approximation stipulated in equation (17), the nonlinear
(VCCS) I(l, τ ) at any time τ of the interval of analysis [0, T ] may be written as

I(l, τ ) = �

M−1∑
k=0

IkP�(τ − τk) +
M−1∑
k=0

(Ik+1 − Ik)r�(τ − τk) (26)

where r�(τ) = τP�(τ) and Ik = I(l, τk).
On inserting the Laplace transform of I(l, τ ) in equation (25), one can easily check that

χ(s) = χs(s) − �χP�
(s)

M−1∑
k=0

Ik exp(τks) − χr�
(s)

M−1∑
k=0

(Ik+1 − Ik) exp(τks) (27)

where

χs(s) = Â−1(s)Ws(s)

χP�
(s) = Â−1(s)DL(p�(τ))

χP�
(s) = Â−1(s)DL(r�(τ))

with L denoting the operation of taking the Laplace transform. The operation of going back
to the time domain from the Laplace domain will be denoted by L−1.

3.3. Numerical inversion of Laplace transform

Many conventional algorithms for numerical inversion of Laplace transforms are based on the
complex inversion formula [13]

χ(t) = 1

2π i

∫ c+i∞

c−i∞
χ(s) est ds t � 0 (28)

where χ(t) satisfies an inequality of the form (|χ(t)| < � eσ t (t → ∞)) and χ(s) is defined
for all values of s lying in a half-plane Re(s) > σ . Under these assumptions, an approximate
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formula of (28) in discrete form can be written as

Φk ≈ ω

2π
exp(cτk)

(
2Re

(
NL−1∑
n=0

χ(c − inω) exp(−iτknω)

)
− χ(c)

)

k = 0, 1, . . . , NL − 1 (29)

χ(τk) = [Φk]M (30)

where ω = π
T

, τk = k� and NL = 2M . The coefficient c can be set using the formula

c ≈ σ − ω

2π
ln(ε) (31)

where ε denotes the desired relative error.
The evaluation of the sum in equation (29) is performed using the FFT algorithm [14]

which is particularly useful since it offers the saving of a significant number of numerical
operations over conventional methods. The operator [.]M designates the first M elements of
the FFT operation result. In other words, k = 0, 1, . . . ,M − 1 in equation (30). It should
be remarked, at this point, that in practice an increasing error at the end of the interval [0, T ]
occurs when one uses relationship (30). This error occurs as a result of working with a
finite sum (29) which should be normally infinite. To minimize this error, the u-nonlinear
transformation which requires a few additional terms above those NL terms used by the FFT
algorithm is applied to give a precision to the resultant sum. To this end, let

aχ (1) =
[

NL−1∑
n=0

χ(c − inω) e−iτknω

]
M

aχ (j) = χ(c − i(NL + j − 2)ω) exp(−iτk(NL + j − 2)ω) (32)

j = 2, 3, . . . , Nu k = 0, 2, . . . , M − 1.

The u-transformation [15] is defined by

uχ =

 Nu∑

j=0

(−1)j
(

Nu

j

)(
1 + j

Nu + 1

)(Nu−2)

Aχ (1 + j)/aχ (1 + j)


/


 Nu∑

j=0

(−1)j
(

Nu

j

) (
1 + j

Nu + 1

)(Nu−2)

1/aχ (1 + j)


 (33)

and Aχ (m) = ∑m
j=1 aχ (j). The operator / denotes element-by-element division. Practically,

one gets better accuracy of the results by setting Nu = 5 or 7. The proposed formula for the
numerical inverse Laplace transform is then given by

χ(τk) = ω

2π
ecτk (2 Re (uχk

) − χ(c)) k = 0, 1, . . . ,M − 1 (34)

where uχk
is the kth element of uχ .

To illustrate the loss of accuracy in the computation of χ(τ ) using equation (30), let us
consider, as an example, χ(s) = 1

s
1 + e−2s

1 − e−2s . The inverse Laplace transform of χ(s) is given

in the following closed-form χ(τ) = τ + 2
π

∑∞
n=1

sin(nπτ)

n
. A plot of L−1(χ(s)) obtained

from equations (30) and (34) is given in figure 3. As indicated, there is a progressive loss of
accuracy with increasing time for equation (30).
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Figure 3. Comparison of numerical inverse Laplace transforms using equation (30) (dashed) and
equation (34) (solid).

3.4. Time-domain response and numerical examples

Let L−1(χ(s), χp�
(s), χr�

(s)) = (χ(τ ), χp�
(τ ), χr�

(τ )). It is easy to show from
equation (27) that

χ(τ ) = χs(τ ) − �

M−1∑
k=0

χP�
(τ − τk)Ik −

M−1∑
k=0

χr�
(τ − τk)(Ik+1 − Ik). (35)

The voltage and current at the line far end are obtained by solving a set of M nonlinear
algebraic equations in the time domain in the form

f(Dχ(tr )) − I(l, tr ) = 0 r = 0, 1, . . . , M − 1 (36)

where τr < tr < τr+1 and � = tr+1 − tr (r = 0, 1, . . . , M − 1). Using (35), χ(tr ) may be
expressed as

χ(tr ) = αr
χ Ir+1 + βr

χ (37)

with

αr
χ = −χr�

(tr − τr)
(38)

βr
χ =

r∑
k=0

(χr�
(tr − τk) − �χP�

(tr − τk))Ik + χs(tr ) −
r−1∑
k=0

χr�
(tr − τk)Ik+1.

The formula from which the updated vector I(j+1)

r+1 is calculated in Newton’s iteration is

J|Ir+1=I(j)

r+1

(
I(j+1)

r+1 − I(j)

r+1

) = −(f(Dχ(j)(tr )) − I(j)(l, tr ))

J|Ir+1=I(j)

r+1
= ∂f(v)

∂v
Dαr

χ − tr − τr

�
U v = Dχ.

(39)

The iteration is continued until I(j+1)

r+1 and I(j)

r+1 are sufficiently close to each other.
As an example of the responses provided by this calculational model, a bifilar transmission

line described in figure 2 has been considered. The metal oxide varistors (MOVs) are used as
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Figure 5. Near end (solid) and far end (dashed) line currents.

nonlinear components of the network. The MOVs with the common approximation of the v–i

characteristics (figure 4) were taken:

I(l, τ ) = f(Dχ) = (f1(V1(l, τ ), f2(V2(l, τ ))T

fi(v) = Pi

(
v

v
(i)
ref

)qi

i = 1, 2 (40)

where P1,2 = 1 kA , q1,2 = 23 and v
(1,2)
ref = 150 kV.

The pulse E(τ) is assumed to be a bi-exponential function

E(τ) = Eo(e
−ατ − e−βτ )
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Figure 6. Transient induced voltages at the line terminals. The solid curve represents the open-
circuit voltage. The nonlinear load voltage is specified by the dashed curve.

where Eo = 56.6 kV m−1, α = 4.086 × 106 s−1, β = 1.56 × 108 s−1. Ground resistivity
and permittivity are 100 � m and 15 respectively. The following values are assigned to the
parameters of the impinging plane wave: φ = 0◦, η = 0◦ and θ = 30◦. The value of the linear
resistor is R = 100 �.

The curves in figure 5 correspond to the currents at the line terminals. These currents are
calculated using NL = 128 frequency points.

An examination of figure 6 shows that the voltage at the end of the line does not exceed
150 kV. This is exactly the value of the voltage vref specified by the nonlinear component.
Also shown is a decrease in oscillations caused by the nonlinear surge arrester.

4. Conclusion

A new approach for calculating transients in lossy line systems exposed to external fields has
been presented. Analysis of the multiconductor system based on the transmission line theory
is performed by considering equivalent circuits in which induced voltages and currents are
calculated as a function of the series impedance and the shunt admittance of the line. Losses
in the ground are taken into account by introducing an accurate analytical expression for these
transmission line parameters. The formulation of the network equations is performed in the
Laplace s-domain. The nonlinear loads are replaced by time-dependent sources using the
linear-piecewise approximation. The time-domain results are obtained using an accurate FFT-
based numerical inverse Laplace transform in conjunction with the u -nonlinear transformation
and Newton’s algorithm.
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